An improved algorithm for supervised fuzzyC-means clustering of remotely sensed data
نویسندگان
چکیده
منابع مشابه
An improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملPerformance Analysis of K-Means Clustering For Remotely Sensed Images
Remote sensing plays a vital role in overseeing the transformations on the earth surface. Unsupervised clustering has a indispensable role in an immense range of applications like remote sensing, motion detection, environmental monitoring, medical diagnosis, damage assessment, agricultural surveys, surveillance etc In this paper, a novel method for unsupervised classification in multitemporal o...
متن کاملAn Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes
Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...
متن کاملAn Improved K-means Algorithm for Clustering Categorical Data
Most of the earlier work on clustering is mainly focused on numerical data the inherent geometric properties of which can be exploited to naturally define distance functions between the data points. However, the computational cost makes most of the previous algorithms unacceptable for clustering very large databases. The k-means algorithm is well known for its efficiency in this respect. At the...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geo-spatial Information Science
سال: 2000
ISSN: 1009-5020,1993-5153
DOI: 10.1007/bf02826805